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Abstract 

A major component of the extracellular matrix is hyaluronan, a regulator cell 

migration/survival and differentiation during response-to-injury processes. The receptor for 

hyaluronan-mediated motility (RHAMM) binds to HA and has limited constitutive 

expression but is upregulated during tissue injury. Blocking HA fragment:RHAMM 

interactions has therapeutic potential for treating cancer but truncation of RHAMM into 

peptides mimicking only the HA binding domains is predicted to lose their natural α-helical 

structure. The goal of this project is to explore the effects cyclizing each binding domain has 

on helicity and its biological effect. Eighteen peptides were synthesized and cyclized using 

lactam bridges. The peptides were analyzed by circular dichroism spectroscopy and one 

stapled peptide exhibited a 4-fold increase in helicity compared to the unstapled sequence 

and significantly decreased migration, inflammation, and fibrosis in vitro. This cyclic peptide 

is a novel protein-carbohydrate inhibitor and has the potential to be a therapeutic in the 

cancer treatment. 

Keywords 

Peptide, cyclization, lactam, alpha helix, receptor for hyaluronan mediated motility, 
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Chapter 1  

1 Introduction 

1.1 Hyaluronan 

The extracellular matrix (ECM) is a tissue component that provides structural and 

biochemical support to neighboring cells and that is constantly undergoing modifications to 

better suit the needs yof those cells. These changes are not always benign: during cancer 

metastasis, the regular ECM framework is disrupted and manipulated to facilitate tumor 

initiation and progression1,2. A major component of the ECM is hyaluronan (HA), a 

glycosaminoglycan (GAG) that contains repeating disaccharide units of N-acetyl-D-

glucosamine and D-glucuronic acid (Figure 1.1).  

 

Figure 1.1 - Structure of hyaluronan. 

 

HA has a variety of functions which include the regulation of proliferation, cell 

motility, and adhesion, all of which are factors in cancer metastasis3–6. It is important to note 

that the functions of HA are highly size-dependent. Native high molecular weight (MW) HA 

(>500 kDa) has the ability to reduce inflammation. In the case of tissue injury, HA can be 

fragmented by reactive oxygen and nitrogen species (ROS and RNS, respectively) such as 

hydroxyl radicals, peroxynitrite, or peroxynitrous acid7. HA can also be cleaved by 

hyaluronidases (Hyals), a family of proteins that are able to cleave the β-1,4-glycosidic bond 

of HA8. When HA fragments, the resulting lower MW HA (e.g. <200 kDa) aids in the 

promotion of inflammation and migration of cells (Figure 1.2). 
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Figure 1.2 - HA can be fragmented by hyaluronidases (Hyals) or reactive oxygen species 

(ROS) in a tumor. When HA is fragmented, various cellular functions can occur due to 

interactions with the RHAMM/CD44 complex. 

 

1.2 Receptor for Hyaluronan Mediated Motility (RHAMM) 

Like many receptor ligands, HA is known to activate certain receptors, one of which 

is the receptor for hyaluronan mediated motility (RHAMM). RHAMM can be located on the 

cell surface as a glycosylphosphatidylinositol (GPI) linked protein, or it can be found 

internally within the cytoplasm9. On the cell surface, RHAMM is able to interact with other 

cell-surface receptors, such as CD44; this interaction is believed to activate the ERK1/2 MAP 

kinase pathway10,11. When RHAMM is located intracellularly, it acts as a mitotic 

spindle/centrosomal protein and can affect mitotic spindle integrity11,12. RHAMM mRNA 

expression in adult homeostatic tissue is tightly regulated; expression typically remains very 

low, but it transiently increases when tissue injury occurs11. When there are increased levels 

of RHAMM expression found in tumors, it is correlated with higher mortality rates 13. For 

this reason, blocking the HA fragment:RHAMM interaction has therapeutic potential, as it 

could interrupt a vital facilitator of metastasis. In prostate cancer (PCa) specifically, elevated 

levels of RHAMM have been observed, as well as aberrant HA:RHAMM signaling in a 

metastatic cells line, PC3MLN414,15.  

RHAMM is a 72 kDa protein that has been shown to be mainly α-helical by 2D 

nuclear magnetic resonance (NMR)5. Yang et al. observed that there are two HA binding 

domains (HABD) in RHAMM, located near the C-terminus of the protein, that are 10 and 11 

RHAMM
CD44

High MW HA Low MW HA PCa Cell

Migration
Proliferation

Tumor Growth

Hyals/ROS
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amino acids in length respectively; these domains are separated by a 15 amino acid leucine 

zipper (Figure 1.3)6.  

 

Figure 1.3 - Sequence of the C-terminal RHAMM(518-576) (top line) showing the two 

binding domains (underlined) and the secondary structure prediction by 2D NMR 

(bottom line). Depiction of the truncation of the sequence shows that it is possible to 

obtain a low molecular weight peptide with an α-helical characteristic. H = α-Helix; C 

= Random coil; E = Extended Coil 

 

The HABDs are within two α-helical portions of RHAMM and have a BX7B binding 

motif, where B is a basic residue (such as lysine or arginine) and X is any non-acidic residue 

(these are generally hydrophobic)5,6. The RHAMM HABDs have a positively charged surface 

due to the abundance of lysine and arginine residues that orient themselves such that they are 

exposed to solvent when in an α-helical confirmation. The positively charged surface binds 

through ionic interactions with the negatively charged carboxylate ions present in HA5. The 

regions surrounding the HABDs of RHAMM are thought to extend inward to form a 

hydrophobic core, which assists in stabilizing the secondary structure5; as such, this can 

contribute to the loss of secondary structure that occurs when the amino acid sequence is 

truncated to include just one of binding domains.  

1.3 Peptides as Drugs 

Proteins are stabilized by their natural biological environment and by binding to their 

endogenous target via one or more small regions in the amino acid sequence of the protein16. 

The biological activity of proteins is dependent on their three-dimensional structure, 
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including secondary structure, which is in turn governed by their amino acid sequence16. The 

secondary structure of a protein helps align the binding region properly for recognition of a 

specific ligand.  

In drug design, the focus of pharmaceutical development is typically on either small 

molecules (compounds with a molecular weight less than 500 Da) or on large biologics 

(compounds with a molecular weight greater than 5000 Da)17. With these two classes taking 

the low and high molecular ranges, peptides fit nicely in between as they typically contain 

less than 50 amino acids and have molecular weights that fall between these two classes of 

drugs17. They are smaller than their larger protein biologic counterparts, meaning that they 

are often less expensive and easier to manufacture than biologics while still maintaining 

similar specificity and potency towards their intended target17. However, shortened unbound 

peptides have a propensity to lose their secondary structure under physiological conditions, 

mostly due to loss of side-chain interactions such as hydrogen bonding or electrostatic forces. 

These side-chain interactions facilitate the formation of the secondary structure needed for 

optimal binding18,19, as greater affinity is observed when the ligand and receptor are both in 

their native conformation 16. 

There are three main divisions of protein secondary structure: random coil, β-sheet, 

and α-helix that have been shown to be important for protein-peptide interactions. About 62 

percent of protein-protein complexes in the Protein Data Bank include an α-helix interaction; 

this indicates that helical structures play a major role in mediating many biological processes, 

including those that involve therapeutic targets16,19. The helix-coil transition theory states that 

there is a high energy requirement needed for organizing three consecutive amino acids in a 

helical conformation, limiting the formation of helices and potentially the activity of 

shortened peptides20. This energy barrier is thought to be overcome by pre-folding shortened 

peptides, and would therefore enable truncated peptides to adopt the desired α-helix 

conformation21. 

1.4 Synthetic Stapling Methods 

One additional disadvantage of peptides as therapeutics, is that peptides suffer from 

protease hydrolysis in vivo, and therefore have limited biological stability16. To overcome 
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this problem, strategies such as capping, amidation, and the addition of unnatural amino acids 

have been used. Another approach is the cyclization of peptides, which results in a 

constrained structure with limited flexibility and less rotatable bonds. Cyclization increases a 

peptide’s resistance to protease degradation in vivo, as the α-helix diameter of the cyclized 

peptide is too large to fit into protease active sites16. Moreover, membrane permeability 

improves when a molecule has a less polar surface and fewer rotatable bonds. Therefore, 

cyclic peptides may have an improved ability to move across the epithelial barrier of the 

gastrointestinal tract, indicating greater potential for oral bioavailability compared to their 

noncyclic counterparts17. Peptide cyclization is a method of pre-folding shortened peptides, 

as it promotes α-helix formation prior to target binding, and may therefore increase the 

biological activity of these shortened peptides19. Synthesis of cyclic helical peptides does 

require that the sequence has the natural propensity to fold into an α-helix; without this, 

cyclization may not force the peptide into the desired conformation18.  

Cyclization can be introduced to a peptide by modifying the side chains of its amino 

acid residues. α-helical peptides have 3.6 amino acids per turn, which results in residues at 

positions i, i+4, and i+7 occurring on the same face of the helix when the peptide is folded 

correctly19. It is ideal to join i, i+4/i+7 residues by synthetically introducing covalent bonds, 

referred to as ‘staples’, to stabilize the α-helical conformation22. To identify the optimal 

location for a staple, a form of structure-activity relationship study termed a ‘staple scan’ is 

performed. This is achieved by introducing a covalent bond between every i and i+4 pair of 

residues that are not essential for target binding and subsequently evaluating the structure for 

helicity and biological acitivty18.  

Currently there are four prevalent stapling techniques capable of promoting a helical 

structure are reported in the literature: a lactam bridge between side chains, a hydrocarbon 

linker between side chains, a metal-ion clip, or a hydrogen bond surrogate ( Figure 1.4)17,19.  
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 Figure 1.4 - The four methods of constraining a peptide into an α-helix: (a) lactam 

bridge; (b) hydrocarbon staple; (c) metal-ion clip; (d) hydrogen bond surrogate.  

 

Different stapling strategies have different propensities to induce α-helical effects, as 

some staples produce peptides are optimally helical in water, while others may require 

secondary structure stabilizing solvents, such as trifluoroethanol (TFE), to increase the 

helicity of the peptide for analysis16. Hydrocarbon and lactam bridges tend to be more 

flexible, though this depends on the lengths of the side chain linkers18. Shorter staples have 

been hypothesized to create more rigid and stable helices22, but ring size in cyclized peptides 

is also dependent on the sequence and confirmation23. In all cases, the linker chain for 

cyclization should be large enough to overcome ring strain, which in turn will prevent the 

need for a high activation energy to complete the cyclization23. When designing a cyclic 

peptide, it is imperative to remember that the side chains that are modified to create these 

linkers can no longer be involved in target recognition, so selection of position and amino 

acids to be replaced must be carefully considered. Cyclization steps are typically carried out 

on-resin as opposed to in-solution; this is due to the increased possibility of polymerization 

or dimerization during in-solution cyclization, as well as time-consuming dilution and 

purification leading to lower yields24. As these peptides are ultimately being designed as 

therapeutics, we decided to focus on lactam bridge cyclization due to its ease of synthesis and 

increased stability in vivo compared to the other techniques discussed.  
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1.5 Analysis of α-Helicity 

Circular dichroism (CD) spectroscopy is a technique used to analyze the secondary 

structure of peptides and proteins. The optical technique of CD analyzes the extent to which 

exposed asymmetric molecules can absorb right and left handed circularly polarized light25. 

The chromophores of the amides in the peptide’s primary amino acid sequence causes 

different excitation interactions that produce different features on the spectra depending on 

the amides’ positioning (Figure 1.5a)26. Due to the differences in secondary structure, it has 

been observed that the CD spectrum for an α-helix is unique compared to those of other 

secondary structures. For a protein with an α-helix, two negative bands are observed at 

222nm and 208nm and one positive band is observed at 193nm, while linear disordered 

proteins show one negative band around 195nm and shallow maxima at 210nm25. However, 

when comparing α-helical proteins and peptides to linear sequences, it is important to 

consider that macromolecules are able to adopt varying degrees of each conformation, 

depending on the environment surrounding each section. This will change the appearance of 

the CD spectrum, as the absorbance will be a mixture of the conformations present in the 

peptide or protein (Figure 1.5b)26.  
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Figure 1.5 - (a) Experimental circular dichroism spectra of poly-L-lysine in the α-

helical, β, and random conformation; (b) Calculated circular dichroism of poly-L-lysine 

containing 0% β and varying percentages of α-helix and random coil26. 

 

As this project deals with stapling a small region out of the whole sequence, it is 

assumed that the conformation of the entire peptide will not be 100 percent helical, as the 

termini of the peptide will have decreased stabilizing support. This may result in a 

combination of a random coil and α-helix, depending on how well the staple is able to induce 

helicity in areas of the peptide not contained within the cyclic region. 

1.6 Surface Plasmon Resonance (SPR) 

To be able to test the ability of synthesized peptides to bind to their natural ligand (i.e. 

HA), surface plasmon resonance (SPR) will be used. The technique of SPR has been used 

and continuously improved since its inception in 197727. There have been many refinements 

to the base technology over the years, but its appeal – the ability to test the binding of 

unmodified compounds to a target bound to a surface (e.g. a chip) – has always remained the 
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same. SPR works upon the basis of measuring the mass change of a surface in real time. This 

mass change can contain kinetic and equilibrium (steady state) information28. The surface of 

the SPR chip can be composed of a variety of different metals, but gold is typically used as it 

is chemically inert and highly stable28. This gold surface can be readily modified with a 

ligand, and then an unmodified analyte can be released onto the surface (Figure 1.6).  

 

Figure 1.6 - How the binding of an analyte to a bound ligand is able to be measured 

using SPR. 

 

In this thesis, a localized surface plasmon resonance (LSPR) was used instead of 

traditional SPR. LSPR differs from SPR by using gold nanoparticles instead of the 

continuous film that is traditionally used in SPR. To calculate analyte binding, LSPR 

measures the small change in the absorption of light of the nanoparticles, as opposed to the 

conventional measurement of change in reflected angle of light. Absorbance can be used in 

LSPR as nanoparticles produce a strong absorbance peak in the visible light range; a shift in 

this peak reflects the change in the refractive index of the nanoparticles when a binding event 

occurs (Figure 1.7).  
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Figure 1.7 - The difference in how kinetic information is obtained in (a) traditional SPR 

and (b) localized SPR. 

 

1.7 Objectives of Thesis 

The purpose of this thesis is to create a potential peptide therapeutic that is able to 

prevent the RHAMM:HA fragment interaction from occurring. This will be done by 

synthesizing both HABDs and performing an i, i+4 lactam staple scan to identify the optimal 

staple position. These peptides will be analyzed by CD spectroscopy to quantify the degree 

of α-helicity, and by SPR to determine binding to HA. It is hypothesized that the formation 

of a lactam bridge will increase both the helicity of the peptide and its binding towards HA. 

The cyclized peptide that shows the best α-helical conformation will become the lead 

compound for an alanine scan in order to identify the most essential residues for binding. 

This lead cyclized peptide candidate will then undergo in vitro assays to assess its ability to 

inhibit migration of cells and the release of inflammatory markers. This will indicate its 

potential for disrupting the RHAMM:HA fragment interaction that allows cancer cells to 

display increased migration and proliferation.  
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Chapter 2 

2 Design, synthesis, and evaluation of stapled peptides that 

mimic the hyaluronan binding domains of RHAMM 

2.1 Introduction 

Cancer is a growing concern worldwide, as mortality rates from cancer have the 

potential to surpass those of heart disease1. Metastatic tumors are especially problematic, as it 

is the metastases forming distant from the primary tumor site that are the main cause of death 

in patients2. In order for metastases to form, the extracellular matrix (ECM) must be modified 

to make the cancer cell movement favorable3. The ECM provides structural and biochemical 

support for its surrounding cells and contains many chemoattractants, thereby allowing it to 

regulate the migration of cells3. A main component of the ECM is hyaluronan (HA), a 

glycosaminoglycan consisting of repeating disaccharides units of N-acetyl-D-glucosamine 

and D-glucuronic acid3,4. HA has a variety of functions that have been shown to regulate 

proliferation, cell motility, and adhesion, all of which are important in cancer metastasis5–8. 

HA function depends on the carbohydrate’s ability to activate certain receptors, such as the 

receptor for hyaluronan mediated motility (RHAMM).  

RHAMM can be located on the cell surface as a glycosylphosphatidylinositol (GPI) 

linked protein, or it can be found intracellularly within the cytoplasm. On the cell surface, 

RHAMM is interacts with other cell-surface receptors, such as CD44, which is believed to 

activate the extracellular signal-regulated kinase (ERK1/2)/mitogen activated protein kinase 

(MAPK) pathway9,10. RHAMM expression is tightly regulated: typically, it remains very low 

in adult homeostatic tissue, but mRNA expression increases due to tissue injury10. Increased 

RHAMM expression found in tumors have a positive correlation with a poor outcome for the 

patient11. Due to this, blocking the HA fragment:RHAMM interaction could interrupt the 

vital role in metastasis, leading to a potential therapeutic.  

RHAMM is a 72kDa protein that is mainly α-helical as determined by 2D NMR7. It 

has two HA binding domains (HABD) which are located towards the C-terminus region of 
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the protein within two α-helical regions that are 10 and 11 amino acids in length7,12,13. Using 

site-directed mutagenesis, Yang et al. discovered that RHAMM and other HA-binding 

proteins have a characteristic BX7B motif, where B is a basic residue (such as lysine or 

arginine) and X is any non-acidic residue that is generally hydrophobic5. It was observed that 

in the first HABD, four Lys residues (K401, K411, K405, and K409) were found to be 

important for interaction with HA5. Mutation of the residues K430, R431, or K432 within the 

second binding domain saw a decrease in HA binding. Also within the second HABD, when 

K423 was changed to Asn, there was no interaction with HA observed, indicating that there is 

a need for proper spacing of the basic amino acids for binding to HA5. It is the positive 

charges on these basic residues that are able to interact with the negatively charged 

carboxylic acid on HA. This clustering of amino acid charges flanking non-acidic residues 

was observed when the peptide RG3RG2R2 was shown to have similar binding to HA as the 

second HABD5. The regions that surround the HABDs of RHAMM are thought to extend 

inwards to form a hydrophobic core, which assists in stabilizing the secondary structure, 

allowing the basic residues to be properly aligned to bind to HA7. If these surrounding 

regions are lost, it could be a contributing factor to the loss of secondary structure when the 

amino acid sequence is truncated to include just one of the binding domains.  

 The identification of protein-carbohydrate inhibitors (PCI) has largely focused on 

identifying moieties that mimic the carbohydrate function. However, creating this type of PCI 

poses a difficulty, as designing a carbohydrate mimic containing the specific multivalences 

required to increase binding strength between two biological targets can be challenging14. 

However, the focus can be switched to the protein component of the PCI. In order to create a 

drug-like molecule, peptides can be used instead of their larger protein counterparts, as it 

makes them less expensive and often easier to manufacture while still having good 

specificity and potency to their endogenous ligand15. Previously, RHAMM mimicking 

peptides have been developed through the use of phage display libraries4,16. One peptide, 

peptide 15-1, was found to have a 40 percent homology with the linker region between the 

two HABDs of RHAMM and was able to decrease fibroblast migration and reduce 

inflammation and fibrosis4. Additionally, peptides have been developed that contain the Mus 

musculus sequence of the linker region between the two HABDs of RHAMM, and have been 

shown to increase adipogensis in mammary fat pads of mice17. However, a disadvantage of 
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peptides deriving from a protein sequence is that they are unlikely to retain their secondary 

structure under physiological conditions due to the absence of stabilizing residues that enable 

the protein to properly fold15,18. A lack of secondary structure in a recognition site-mimicking 

peptide increases the energy necessary for target binding, as the specific conformation must 

form upon binding. Due to this, promoting secondary structure formation (such as an α-

helix) in these short peptides prior to binding, may overcome the energetic penalty and 

potentially increase biological activity19. 

 One technique that can achieve this goal is the cyclization of peptides, which can 

induce helical formation within the cyclic portion. Cyclizing peptides results in a structure 

with limited flexibility and increased resistance to protease degradation, which can correlate 

to improved stability in vivo as the diameter of the α-helical cyclized peptide is larger than 

the protease active sites18. To aid in the synthesis of cyclic peptides, it is desirable for the 

linear peptide chain to have the propensity to fold into an α-helix. In order to identify the 

optimal location within a sequence for the cyclic region to promote helical formation while 

maintaining binding affinity to a specific target, a ‘staple scan’ can be performed. This is 

done by manipulating each residue that is not essential for target binding, and subsequently 

evaluating the ensuing structure20. In an α-helix, which contains 3.6 amino acid residues per 

turn, residues at positions i, i+4, and i+7 occur on the same face of the helix when the 

peptide is folded correctly19; therefore, introducing covalent bonds via stapling at these 

positions can stabilize an α-helical conformation21.  

 To investigate the effect that truncation has on the bioactivity and helicity of the 

RHAMM HABDs and the subsequent cyclization, a staple scan was performed for both the 

first HABD (HABD1) and the second HABD (HABD2). The focus was on creating i, i+4 

lactam staples throughout the HABDs, positioning the staples between the two basic residues 

that make up the essential BX7B motif. After each staple was created, the helicity and 

bioactivity of the peptide was evaluated and compared to the linear, unstapled sequence. This 

was done in order to identify and assess any stapled RHAMM analogues that may have 

potential for therapeutic use for treating diseases that involve HA fragmentation such as 

prostate cancer. 
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2.2 Results and Discussion 

2.2.1 Synthesis of peptides 

The effect of synthetic bridging on the degree of α-helicity and the 

binding/bioactivity of the truncated binding domains was studied. All peptides were 

synthesized by Fmoc solid-phase peptide synthesis (SPPS). The linear sequences were 

synthesized using the native amino acid sequence from those portions of the protein (Scheme 

2.1). 

 

Scheme 2.1 - General Fmoc-SPPS method used to synthesize linear peptides to yield 

either the acetylated or non-acetylated sequences. 

 

 The staple scan was performed to identify the effect of synthetic bridging on the 

degree of α-helicity and resulting bioactivity of the truncated binding domains. Cyclization 

was carried out by replacing two amino acids within the sequence with glutamic acid and 

lysine and creating a lactam bridge between their side chains (Figure 2.1).  
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Figure 2.1 – Location for cyclization of peptides using lactam bridge staples (a) cyclic 

peptides derived from HABD1. Compound numbers indicated, see Table 2.1 for 

structure; (b) cyclic peptides derived from HABD2. Compound numbers indicated, see 

Table 2.2 for structure. 

 

The sequences were synthesized by solid-phase peptide synthesis; however, the 

glutamic acid and lysine residues were protected by allylester and allyloxycarbonyl 

protecting groups respectively. These protecting groups allow for the selective deprotection 

of those amino acids using a palladium (0) catalyst so they can subsequently be coupled. The 

remaining protecting groups were removed and the lactam-bridged peptide was cleaved from 

the solid support to obtain the cyclized peptide sequences (Scheme 2.2).  
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Scheme 2.2 - General method showing the formation of the lactam bridge between a 

glutamic acid residue and a lysine residue. 

 

Linear and cyclized peptides were synthesized for HABD1, RHAMM(531-541) (Table 2.1) 

and the HABD2, RHAMM(553-562) (Table 2.2). All peptides (with the exception of 

compounds 7-11) were carboxyamidated and N-terminal acetylated to maintain a neutral 

charge at the termini, allowing them to better mimic the native protein22. Compounds 7-11 

have a free, charged N-terminus in order to study the effects of this charge on helicity and 

binding. All peptides were purified and characterized by LC-MS.  

 

 

 

 

 

 

 

 

 

 

 

N
H

OH
N

R
N
H O

OH
N

N
H RO

H
N

O

R

Fmoc

HN

a 3 b
N
H

OH
N

R
N
H O

OH
N

N
H RO

H
N

O

R

Fmoc

NH2

a 3 b

Pd(PPh3)4
PhSiH3

DCM

N
H

OH
N

R
N
H O

OH
N

N
H RO

H
N

O

R a 3 b

HATU (3eqv.)
DIPEA (6eqv.)

DMF; 12-14h

O

O
O O HO O

H
NO

Fmoc

1. 20% Piperidine
DMF; 15min

2. 20% Acetic Anhydride
DMF; 30min

N
H

OH
N

R
N
H O

OH
N

N
H RO

H
N

O

R a 3 b

H
NO

Ac

NH2

OH
N

R
N
H O

OH
N

N
H RO

H
N

O

R a 3 b

H
NO

H
NH2

OH
N

R
N
H O

OH
N

N
H RO

H
N

O

R a 3 b

H
NO

Ac

95:2.5:2.5
TFA:TIPS:H2O
4-5h

95:2.5:2.5
TFA:TIPS:H2O
4-5h



www.manaraa.com

 

 

20 

Table 2.1 - Sequences of binding domain one (HABD1) where (i, i+4) staples were 

placed in cyclized versions. Mean residue ellipticity values at 222 nm, ratios of mean 

residue ellipticities at 222/208 nm and percentage helicity that were determined at 

20°C. 

 Sequence 

Water 40% TFE/Water 

[θ]222 x103 

(deg 

cm2/dmol) 

[θ]222/

[θ]208 

% 

Helicity 

[θ]222 x103 

(deg 

cm2/dmol) 

[θ]222/

[θ]208 

% 

Helicity 

1 Ac-NLKQKIKHVVKLKDE-NH
2
 -1.14 0.11 6.3 -12.42 0.74 40.3 

2 
cyclo-4,8(Ac-

NLK[EKIKK]VVKLKDE-NH
2
) 

-2.45 0.38 6.9 -12.49 0.80 44.5 

3 
cyclo-5,9(Ac-

NLKQ[EIKHK]VKLKDE-NH
2
) 

-2.82 0.43 8.2 -12.43 0.84 38.0 

4 
cyclo-6,10(Ac-

NLKQK[EKHVK]KLKDE-NH
2
) 

-2.61 0.44 7.8 -12.55 0.85 40.8 

5 
cyclo-7,11(Ac-

NLKQKI[EHVVK]LKDE-NH
2
) 

-3.84 0.55 11.1 -14.22 0.86 42.5 

6 
cyclo-8,12(Ac-

NLKQKIK[EVVKK]KDE-NH
2
) 

-1.79 0.31 19.1 -16.02 0.82 41.5 
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Table 2.2 - Sequences of binding domain two (HABD2) where (i, i+4) staples were 

placed in cyclized versions. Mean residue ellipticity values at 222 nm, ratios of mean 

residue ellipticities at 222/208 nm and percentage helicity that were determined at 

20°C. 

 Sequence 

Water 40% TFE/Water 

[θ]222 x103 

(deg 

cm2/dmol) 

[θ]222/

[θ]208 

% 

Helicity 

[θ]222 x103 

(deg 

cm2/dmol) 

[θ]222/

[θ]208 

% 

Helicity 

7 H-VSKLRSQLVKRKQN-NH
2
 -1.07 0.21 16.5 -10.5 0.68 39.5 

8 
cyclo-4,8(H-

VSK[ERSQK]VKRKQN-NH
2
) 

-2.26 0.45 15.8 -8.56 0.72 36.2 

9 
cyclo-5,9(H-

VSKL[ESQLK]KRKQN-NH
2
) 

-4.40 0.57 21.7 -10.32 0.79 52.6 

10 
cyclo-6,10(H-

VSKLR[EQLVK]RKQN-NH
2
) 

-4.34 0.58 22.6 -10.09 0.81 51.3 

11 
cyclo-7,11(H-

VSKLRS[ELVKK]KQN-NH
2
) 

-1.53 0.30 23.1 -9.52 0.69 33.3 

12 Ac-VSKLRSQLVKRKQN-NH
2
 -1.10 0.23 14.8 -11.4 0.72 40.9 

13 
cyclo-4,8(Ac-

VSK[ERSQK]VKRKQN-NH
2
) 

-3.34 0.53 14.6 -9.75 0.81 37.0 

14 
cyclo-5,9(Ac-

VSKL[ESQLK]KRKQN-NH
2
) 

-6.45 0.70 25.5 -13.33 0.82 51.2 

15 
cyclo-6,10(Ac-

VSKLR[EQLVK]RKQN-NH
2
) 

-4.85 0.61 28.0 -11.86 0.79 44.8 

16 
cyclo-7,11(Ac-

VSKLRS[ELVKK]KQN-NH
2
) 

-2.96 0.54 16.3 -10.53 0.74 34.9 

17 
cyclo-5,9(Ac-

VSKL[KSQLE]KRKQN-NH
2
) 

-0.97 0.20 5.5 -8.78 0.75 36.3 

18 
cyclo-6,10(Ac-

VSKLR[KQLVE]RKQN-NH
2
) 

-1.98 0.37 8.2 -12.84 0.75 52.2 
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Cyclization of the HABDs was achieved though the formation of a lactam bridge 

between two amino acid side chains. Glutamic acid was placed in the i position and lysine in 

the i+4 position in order to create a ring size of 21 atoms. These amino acids were used for 

creating the lactam bridge as it has been reported that lactam bridges forming 21-membered 

rings are α-helix-inducing, while 19-membered rings are α-helix destabilizing23. Therefore, 

cyclization in this way should allow the peptide to more easily overcome the high-energy 

barrier required to form an α-helix.  

The composition of the staple has been reported to affect the properties of cyclized 

peptides; therefore the placement of the lysine and glutamic acid residues in the staple was 

evaluated. For cyclic lactams, peptides are most helical when the glutamic acid is in the i 

position and lysine is in the i+4 position24. The composition of the staple was reversed in the 

two peptides from HABD2 that were found to have the greatest induced helicity (14 and 15). 

These peptides (17 and 18) contained a staple that was constructed by a lysine residue in the i 

position and a glutamic acid residue in the i+4 position. 

2.2.2 Helicity analysis of cyclization by circular dichroism 

spectroscopy 
Cyclized sequences have been shown to have greater helicity and a corresponding increase in 

bioactivity23,25–29. The synthesized sequences were analyzed by CD spectroscopy in order to 

determine the degree of α-helicity present in each peptide. A mean residue ellipticity ratio 

([θ]222/[θ]208) that is ~1.00 indicates high α-helical character, while a lower ratio implies that 

the conformation could contain a combination of an α-helix and a β–sheet or random coil26,30. 

The molar ellipticity ratios and the quantification of helicity for HABD1 and HABD2 can be 

found in Table 2.1 and Table 2.2, respectively.  

The linear, unstapled peptides (1, 7, 12) show minimal α-helical character in water. 

This was expected, as there is a lack of residues that could contribute to a hydrophobic core, 

which would result in a stabilized secondary structure7. However, when the same sequences 

were tested in 40% TFE solution, a higher [θ]222/[θ]208 ratio was observed, with 1, 7, and 12 

having values of around 0.75, suggesting the formation of an α-helical structure. This is due 

to the natural propensity of the sequence to adopt a helical shape, as the TFE facilitates the 

peptide’s folding18. It is assumed that the [θ]222/[θ]208 ratio of the linear sequences in the 
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presence of 40% TFE is the theoretical maximum helicity that these synthetic sequences can 

possess.  

The HABD1 did not achieve as substantial of an increase in helicity when the staples 

were introduced compared to the improvements seen when the staple was placed in HABD2 

(Figure 2.2). This can be seen by the larger minima seen with the stapled peptides in HABD2 

compared to that of their linear counterparts. This difference between binding domains could 

be due to the differences in their primary sequences. HABD2 has more leucine and glutamine 

residues in its primary sequence than HABD1, and those residues are proposed to be helix-

stabilizing residues26. Without these residues in the sequence, the α-helical structure may 

become less stable and therefore result in a weaker α-helical signal. 

 

Figure 2.2 - (a) CD spectra of linear unstapled sequence of HABD1 (1) and the cyclic 

versions (3 and 5) that showed the greatest increase in helicity; (b) CD spectra of linear 

unstapled sequence of HABD2 (12) and the cyclic versions (14 and 15) that showed the 

greatest increase in helicity. 
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The stapled peptides of HABD1 resulted in an increase in helicity when compared to 

the linear sequence. This was determined by the increase in the molar ellipticity at 222 nm 

(Figure 2.3; a) and the minimum moving closer to 208 nm, which is characteristic of an α-

helix. Comparing the molar ellipticity ratios demonstrates that the values of the stapled 

peptides (2-6) in water are greater than that of the unstapled sequence (1) (Figure 2.3; b). The 

greatest [θ]222/[θ]208 ratio for the cyclic peptides from HABD1 was compound 5. The 

sequence has a [θ]222/[θ]208 ratio of 0.55 which approaches 0.74, which is the [θ]222/[θ]208 

value of the unstapled sequence (1) in the presence of 40% TFE. 

 

Figure 2.3 - (a) Comparison of CD spectra of the linear sequence of HABD1 (1) and the 

cyclized sequence (2-6) in water; (b) Comparison of [θ]222/[θ]208 values for the sequences 

(linear and cyclized) that derive from HABD1. 

 

There was a greater increase in induced helicity of HABD2 when the stapled were 

introduced to the sequence (Figure 2.4; a) than seen in HABD1. Cyclizing this sequence 

creates a CD signal that has a greater minimum at 222nm, as well as a larger maximum at 

-2.00E+04	

-1.50E+04	

-1.00E+04	

-5.00E+03	

0.00E+00	

5.00E+03	

1.00E+04	

180	 200	 220	 240	 260	

M
ea
n	
Re
si
du
e	
El
lip
ti
ci
ty
	(d
eg
	c
m

2 /
dm

ol
)	

Wavelength	(nm)	

1	 3	 5	 2	 4	 6	

a

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 2	 3	 4	 5	 6	

[θ
] 2
22
/[
θ]

20
8	

Water	 40%	TFE/Water	

b



www.manaraa.com

 

 

25 

192nm, both indicators of α-helicity. When the [θ]222/[θ]208 ratio from the linear peptide 

sequence is compared to the cyclized versions, the ratios for the cyclized sequences in water 

are comparable to the value of the linear counterpart in 40% TFE (Figure 2.4; b). The 

cyclized peptides in water alone achieve similar [θ]222/[θ]208 ratios as the theoretical 

maximum obtained by the linear counterpart in 40% TFE/water, indicating that the staple is 

helping induce the maximum helicity possible for this sequence. 

 

Figure 2.4 - (a) Comparison of CD spectra of the linear sequence of HABD (12) and the 

cyclized sequences (13-16) in water; (b) Comparison of [θ]222/[θ]208 values for the 

sequences (linear and cyclized) that derive from HABD2. 
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induced by the staples placed at different points within each peptide may be due to the 

changes made to their primary sequences, since two amino acids (in the i and i+4 positions) 

must be substituted in order to form the lactam bridge. In compound 13, leucine was replaced 

at both the i and i+4 position, while in compound 16, glutamine was replaced at the i position 

and arginine was replaced at i+4. Leucine and glutamine are proposed to be helix-stabilizing 

residues26 and the loss of these amino acids may contribute to the lower helicity.  

During the assessment of HABD2, the positioning of the amino acids that compose 

the staple were reversed in two instances to observe its effect on the formation of an α-helix. 

It was noted that when lysine was in the i position and glutamic acid in the i+4 position (17 

and 18), their molar ellipticity ratios were 0.20 and 0.37 respectively. This ratio is greatly 

decreased compared compounds 14 and 15 (0.70 and 0.61, respectively), as these sequences 

have the same staple position, just different staple composition. Compound 14 was 3.5 times 

more helical than 17, a trend that is also seen between 15 and 18, as 15 was 1.6 times more 

helical than 18. 

2.2.3 In vitro stability of peptides 

Peptides are susceptible to degradation in-vivo due to their natural composition; 

however, pre-forming the helix by introducing the lactam bridge can reduce exposure of the 

vulnerable amide backbone and increase resistance to protease cleavage31. For these reasons, 

all peptides were subjected to a human serum stability analysis to evaluate the effect of staple 

positions on the peptides’ stability. 

The shortest half-life was seen for Compound 7 at 220 minutes. This was expected, as 

it is a linear peptide with a free N-terminus. However, when the sequences were cyclized, but 

still had a free N-terminus (compounds 8-11), no significant breakdown was observed after 

24 hours. The remaining peptides studied were C and N-terminus capped, both linear and 

cyclized and these peptides displayed no degradation over 24 hours, regardless if they were 

cyclized. It has previously been reported that the combination of N-terminal acetylation and 

carboxyamidation increases a peptide’s resistance to protease degradation32.  

To assess the effectiveness of the staple in interfering with trypsin degradation of the 

peptides, a trypsin assay was run on compounds 12 and 15. As expected, hydrolysis was 
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found to preferentially occur at Arg and Lys residues near the C-terminus in peptides 12 and 

15. The major, initial trypsin hydrolysis sites of 12 were at the carboxyl-terminus of Lys-3 

and Arg-5, and at Lys-10 to a lesser degree. The half-life of peptide 12 towards trypsin 

degradation was determined to be 0.5 minutes, while the introduction of the lactam bridge in 

15 significantly improved the peptide’s stability towards trypsin, as the half-life improved to 

30 minutes.  Hydrolysis of 15 differed from 12 such that digestion did not occur at Arg-5 or 

Lys-10, the latter of which forms a portion of the lactam bridge of 15. The major, initial 

trypsin hydrolysis sites of 15 were at carboxy-terminus of Lys-3, and Arg-11 to a lesser 

degree. 

2.2.4 Ability of peptides to bind hyaluronan 

Due to α-helical character being important to the RHAMM protein for binding to HA, 

it was hypothesized that an improvement in helicity of the stapled peptides over their linear 

counterpart would also increase their ability to bind HA. To test the peptides’ binding, either 

biochemical or biophysical assays can be used. Biochemical assays, such as ELISA, allow 

for a small amount of the protein target to be used and can be useful in a high-throughput 

assay33. However, direct binding measurement of these peptides to HA using an ELISA 

would require tagging of the HABD mimics with a tag molecule, such as biotin, to generate a 

signal. This has the potential to change how the peptide interacts with HA, which 

undesirable. The use of a biophysical screening method such as surface plasmon resonance 

(SPR) allows for a low to medium throughput screening33, but is an ideal method of 

measuring binding, as it does not require modification of the peptides in order to test direct 

binding to HA. To use SPR, 5-10 kDa HA was modified by reductive amination of the 

anomeric carbon with cystamine following a published procedure34 (Scheme 2.3).  

 

Scheme 2.3 - Modification of 5-10 kDa HA with cystamine. 
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Following modification, HA was bound to the surface of the gold chip to be used in 

the SPR experiments. Unmodified peptides were passed over the surface at varying 

concentrations in order to obtain the binding kinetics and the absorbance readings of each 

peptide were also plotted together to compare their signals intensities at identical 

concentrations (Figure 2.5).  

 

Figure 2.5 - SPR binding curves for peptides from (a) HABD1 or (b) HABD2 that were 

passed over HA-coated gold chip at a concentration of 25 µM. 

The KD values were obtained for all of the peptides mimicking HABD1, all acetylated 

peptides from HABD2, and the non-acetylated peptides 7 and 10, in order to determine the 

effect of acetylation on the peptide’s binding to HA (Table 2.3).  
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Table 2.3 - Sequences from both HABD1 and HABD2 and the calculated KD values 

determined by SPR. 

Cmpd Binding Domain Sequence KD (µM) 

1 

1 

Ac-NLKQKIKHVVKLKDE-NH
2
 59.8 

2 cyclo-4,8(Ac-NLK[EKIKK]VVKLKDE-NH
2
) 29.6 

3 cyclo-5,9(Ac-NLKQ[EIKHK]VKLKDE-NH
2
) 6.2 

4 cyclo-6,10(Ac-NLKQK[EKHVK]KLKDE-NH
2
) 158 

5 cyclo-7,11(Ac-NLKQKI[EHVVK]LKDE-NH
2
) 332 

6 cyclo-8,12(Ac-NLKQKIK[EVVKK]KDE-NH
2
) 15.7 

7 

2 

H-VSKLRSQLVKRKQN-NH
2
 3030 

10 cyclo-6,10(H-VSKLR[EQLVK]RKQN-NH
2
) 1.9 

12 Ac-VSKLRSQLVKRKQN-NH
2
 1076 

13 cyclo-4,8(Ac-VSK[ERSQK]VKRKQN-NH
2
) 144 

14 cyclo-5,9(Ac-VSKL[ESQLK]KRKQN-NH
2
) 4.7 

15 cyclo-6,10(Ac-VSKLR[EQLVK]RKQN-NH
2
) 1.0 

16 cyclo-7,11(Ac-VSKLRS[ELVKK]KQN-NH
2
) 22.2 

17 cyclo-5,9(Ac-VSKL[KSQLE]KRKQN-NH
2
) 158 

18 cyclo-6,10(Ac-VSKLR[KQLVE]RKQN-NH
2
) 156 

 

The linear sequence from HABD1 (1) bound to HA more strongly than the linear 

sequences from HABD2 (7 and 12). However the introduction of the staples in HABD1 

decreased binding to HA in some cases (4 and 5). Compound 3, however, showed a 

significant increase in binding. This might be because the residues that were switched out to 

allow formation of the lactam bridge in 4 and 5 were essential for binding, where the 

modified amino acids in compound 3 were not important for HA-RHAMM interactions.  



www.manaraa.com

 

 

30 

The introduction of the staples to HABD2 caused an improvement in binding in all 

cases. In this binding domain, a positive correlation was seen between the mean residue 

ellipticity ratio and the peptide’s ability to bind to HA. Compounds 14 and 15 showed the 

greatest induction of helicity, as well as the greatest increase in binding compared to the 

linear sequence. Also, when the Lys and Glu residues were reversed (compounds 17 and 18), 

the binding to HA decreased compared to their similar sequences 14 and 15. This was a trend 

that followed what was seen via CD spectroscopy, as the helicity was also decreased when 

the lactam bridge was switched from a Glu – Lys to a Lys – Glu.  It was also observed that 

the N-terminally acetylated sequences (12 and 15) had better binding compared to those that 

had a free N-terminus (7 and 10). 

2.2.5 In vitro bioactivity  

It has been established that RHAMM regulates cell motility and stem cell 

differentiation10. These functions have been linked to HA binding capability of RHAMM, 

and to its intracellular association with proteins such as ERK and tubulin. For this reason, all 

peptides were tested in vitro to evaluate their biological activity and identify any correlation 

between bioactivity and helicity. High expression levels of RHAMM has been shown to be 

positively correlated with cellular migration, inflammation, and fibrosis35. Therefore, we 

evaluated our peptides in functional assays relating to these cellular responses. The stapled 

peptides have been designed to mimic RHAMM, and therefore should interact with HA and 

prevent the RHAMM:HA fragment interaction from occurring. The stapled sequence from 

each binding domain that showed the highest binding to HA according to SPR analysis for 

both binding domains were analyzed for their ability to inhibit cellular migration (Figure 

2.6). 
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Figure 2.6 – The inhibition of cellular migration of LR21 cells overexpressing RHAMM 

assessed by a Boyden Chamber assay. Assay was performed at a 10 µg/mL 

concentration of the linear and best cyclic peptides from each binding domain. The 

positive control (no added peptide), which showed minimal inhibition of cellular 

migration, was also measured (UT). (*p<0.05; ***p<0.001) 

 

LR21 cells overexpressing RHAMM were used in a Boyden Chamber assay to assess 

the ability of cells to migrate through pores to the chemoattractant below. When only serum 

is present, cells can actively migrate through the pores. However, in the presence of bioactive 

peptides, there is an inhibitory effect on the cell, resulting in a decrease in migration. 

Compound 15 had a greater inhibitory effect on cell migration than 12, as seen in Figure 2.6, 

which may be linked to its propensity to form an α-helix compared to other peptides studied, 

indicating a direct correlation between HABD2’s helicity and bioactivity. Based on these 

results, HABD1 did not have a significant inhibition of cellular migration while compound 

15 did (p<0.001). For this reason, all inflammation and fibrosis assays were carried out on 

the HABD2 linear and cyclic sequences. The ability of 15 to reduce inflammation and 

fibrosis relative to the linear sequence 12 was then assessed (Figure 2.7).  
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Figure 2.7 - (a) Inflammation assay run with RAW 264.7 macrophages carrying a 

SEAP reporter to assess the inhibition of release of inflammatory markers; (b) Fibrosis 

assay performed with IMR90 human fetal lung fibroblasts to assess the inhibition of 

fibrosis markers. The positive control (no added peptide), which showed minimal 

response in both assays, was also measured (UT). (**p<0.01) 

 

Inflammation plays a key role in cancer, as it has been shown that cancer growth and 

spread can be accelerated through the intrusion of lymphocytes36. NF-κB is an inflammatory 

response that is released from macrophages when they are stimulated with pro-inflammatory 

signals such as PAM3CSK4. It has been observed that there is increased RHAMM 

expression in macrophages when there is tissue injury35. The results have shown a significant 

increase in inhibition of inflammation when 15 is added (p<0.01), while there is not a 

significant inhibitory effect with 12. This indicates that the cyclic RHAMM mimetic (15) is 

able to inhibit the release of NF-κB (Figure 2.7; a), signifying it may be possible for this 

peptide to decrease the accumulation of macrophages, and thus inflammation, within injured 

tissue (i.e. a tumor).  

There is an increase in TGF-β1 production from fibroblasts when there is an injury to 

the tissue. This increase in TGF-β1 can also up-regulate the production and deposition of HA, 
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leading to increased fibrosis35. However, RHAMM:HA interactions are needed in order for 

there to be TGF-β1-stimulated cell locomotion, which would allow for this increase in HA 

production. The fibrosis assay showed that there is a significant decrease in production of 

fibrosis markers upon introduction of 15 (p<0.01), indicating there is less in vitro fibrosis 

occurring. Through comparison of the in vitro assays, peptide 15, which has a 3-fold increase 

in helicity compared to the linear sequence, was able to inhibit a wide range of cellular 

functions.  

2.3 Conclusion 

Peptides containing either HABD1 or HABD2 of RHAMM were synthesized and 

chemically modified in order to stabilize the compounds’ α-helicity. These peptides were 

stapled at various i and i+4 positions along the peptide’s primary sequence as a means of 

constraining the peptide, thus limiting the number of possible conformations that it could 

adopt. Fifteen cyclic peptides were designed and synthesized to mimic the HA binding 

domains of RHAMM. CD spectroscopy was used to analyze and quantify the degree of α-

helicity that the staples introduced in comparison to their unstapled counterpart. It was 

observed that the unstapled peptide had minimal α-helicity in water, as was expected, and 

that compounds 14 and 15 from HABD2 had a greatly improved degree of α-helical 

conformation. It was seen that these stapled peptides had improved serum stability and 

increased resistance to trypsin compared to the unstapled sequence. There was a positive 

correlation between helicity of the cyclic peptides from HABD2 and their ability to bind to 

HA, but the same trend was not observed with HABD1. The best cyclic compound, 15, has 

the potential to be a cancer therapeutic, as it is able to decrease cell migration, inflammation, 

and fibrosis. It has the potential to help decrease the metastases of a primary tumor, leading 

to the potential reduction in the mortality of cancer. We will continue optimize these lead 

compounds and will develop additional in vivo assays for further evaluation. 

2.4 Experimental 

2.4.1 General information 

All Fmoc-protected amino acids were obtained from ChemImpex. HCTU, HATU, and Rink 
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Amide MBHA Resin (4-(2’,4’-dimethoxyphenyl-(9-fluorenylmethoxycarbonyl)-

aminomethyl)-phenoxy-acetamidonorleucyl-4-methyl benzhydrylamine resin) were obtained 

from ChemImpex. Tetrakis(triphenylphosphine)palladium(0), phenylsilane, Fmoc-AEEA 

spacer, and NHS-Biotin were obtained from Sigma-Aldrich. All solvents were obtained from 

Fischer Thermo-Scientific. 

2.4.2 Solid-phase peptide synthesis 

Fmoc-based solid-phase synthesis was carried out by either manual synthesis using a fritted 

glass peptide vessel or by automated synthesis using a Biotage® Syro Wave™ automated 

peptide synthesizer. Synthesis was performed on a 0.1 mmol scale with 0.52 mmol/g Fmoc-

Rink amide MBHA resin and a 3-fold excess of the protected amino acids. The resin was 

swelled in CH2Cl2 (2.0 mL, 15 minutes) then rinsed with DMF (1.0 mL, 1 min). Fmoc 

deprotection was performed with a solution of 20% piperidine/DMF (1.5 mL) 5 minutes, 

then washed with three times with DMF (2.0 mL, vortex 30 seconds) and then again for 

15min with 20% piperidine/DMF (1.5 mL). The resin was further washed with DMF six 

times (2.0 mL, vortex 30 seconds). A Kaiser test was performed after the Fmoc removal to 

verify the presence of a free primary amino group. Fmoc-protected amino acid (0.3 mmol) 

and HCTU (0.3 mmol) was dissolved in DMF (1.5 mL) and added to the resin. The mixture 

was vortexed for 30 seconds and then DIPEA (0.6 mmol) was added to the mixture and 

vortexed for 1 hour. The deprotection/amino acid coupling cycle was repeated until the 

desired amino acid sequence was obtained. After the final amino acid was coupled, the resin 

was washed with DMF (3x) and CH2Cl2 (3x) and then dried under vacuum and stored in the 

freezer (-20 ᴼC). Removal of the N-terminal Fmoc protecting group was achieved using the 

previously described deprotection procedure. Cleavage of the peptide from the resin and side 

chain protecting groups was performed by adding a solution of 95% trifluoroacetic acid/2.5% 

triisopropylsilane/2.5% water (3 mL) to the resin and vortexing for 4-5 hours. After filtration, 

the peptide was precipitated with cold tert-butyl methyl ether (TBME) (20 mL) and collected 

by centrifugation. The mother liquor was decanted, the pellet dissolved in water (20mL) and 

lyophilized to obtain the crude fully deprotected peptide. 
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2.4.3 Deprotection of the allyloxycarbonyl (Alloc) and allylester (OAll) 

protecting groups 

Selective deprotection of the allyloxycarbonyl and the allylester protecting groups was 

accomplished by adding CH2Cl2 (4.5 mL) to the resin-bound peptide and shaking gently for 

10 minutes. After addition of phenylsilane (24 eq), the peptide vessel was flushed with 

nitrogen for 5 minutes. Tetrakis(triphenylphosphine) palladium (0) (0.1 eq) was then added 

to the mixture and the peptide vessel was again flushed with nitrogen, and the reaction was 

allowed to proceed for 10 minutes. The peptide-resin was washed with CH2Cl2 (4 x 30 

seconds), followed by a series of washings with CH2Cl2, DMF, MeOH, DMF, and CH2Cl2 

(30 seconds each).  

2.4.4 Lactam bridge formation 

After selective deprotection of alloc and allyl ester groups, HATU (3 eq) was dissolved in 

DMF (1.5 mL), added to the resin and vortexed for 30 seconds. DIPEA (6 eq) was then 

added and the reaction was vortexed for 2 hours. The resin was rinsed with DMF and CH2Cl2 

(2.0 ml, 3 x 30 seconds each) to remove any residual reactants. 

2.4.5 Purification by RP-HPLC/ESI-MS 

Peptides were analyzed using a reverse-phase analytical HPLC column (Agilent Zorbax SB-

C18 column 4.6 x 150 mm, 3.5 µm). This system was equipped with a Waters 600E 

Multisolvent Delivery System, Waters 600 controller, Waters inline degasser, and Waters 

Masslynx software (version 4.1). Employed mobile phases were 0.1% TFA in Milli-Q water 

(eluent A) and 0.1% TFA in acetonitrile (eluent B). The flow rate was set at 1.5 mLmin-1 

with a gradient elution over a 12 minute gradient. The column eluent was monitored using a 

Waters 2998 Photodiode array detector. Peptides were purified using a reversed-phase 

preparative HPLC column (Agilent Zorbax SB-C18 column 21.2 x 150 mm, 5 µm) on the 

same system described above. The detection method and eluents were the same as the 

analytical system, with the flow rate was set at 20 mLmin-1. The collected fractions were then 

lyophilized to a solid and analyzed by ESI-MS. Purity of final products was determined by an 

Acquity UHPLC-MS (220 nm). 
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2.4.6 Circular dichroism (CD) spectroscopy 

CD spectra were obtained on a Jasco J-810 spectropolarimeter and recorded in the range of 

180-260 nm. Peptide solutions were prepared with a 0.1 M phosphate buffer solution to a 

concentration of 0.5 mM. The measurements were performed in quartz cuvettes with a path 

length of 1 mm and a scanning speed of 10-50 nm/min. Five individual data points were 

averaged by the instrument in order to obtain the reported CD spectrum. The measurements 

were carried out at 20 ᴼC. A blank solution of 0.1 M phosphate buffer solution was run 

before every measurement in order to baseline correct for any UV-interference observed 

from the buffer. Deconvolution of CD spectra were obtained using the CONTINLL program, 

which is part of the web-based program CdPro (http://lamar.colostate.edu/~sreeram/CDPro/). 

2.4.7 Surface plasmon resonance 

HA was modified using a literature procedure, with some modifications34. 5-10kDa HA (40 

mg) was dissolved in DMSO/H2O (7/3, v/v) with an excess amount of sodium 

cyanoborohydride added. This solution was allowed to stir for 12 hours at room temperature, 

10 eq of cystamine was added and the mixture was allowed to stir for a further 24 hours. The 

solution was then added to a dialysis membrane (MWCO 3.5-5 kDa) where the by-products 

were removed by dialysis for 3 days followed by lyophilization until a white powder was 

obtained. SPR experiments were performed with an openSPR (Nicoya Lifesciences, 

Waterloo, Canada) at 25°C with a 100 µL loading loop and a constant flow rate of 50 

µL/min. The cystamine-modified HA was added to a functionalized gold chip by dissolving 

HA-cystamine (1 mg/mL) in water and incubating for 24 hours at 4°C. Binding of the HABD 

mimics and the linear sequences were tested in a 10mM solution of phosphate buffered saline 

(137 mM NaCl, 2.7 mM KCl, 10mM Na2HPO4, 2 mM KH2PO4). The peptides were injected 

over the bound HA in concentrations from 1 µM to 1 mM for 2 min to allow association. 10 

mM PBS was passed over the sensor for 8 min to allow dissociation. After each peptide 

injection, 1 mM NaCl was injected to completely dissociate the complex and regenerate the 

HA surface. Data analysis was performed using Trace Drawer software (Ridgeview 

Instruments AB) as recommended by the manufacturer. Kinetic parameters were calculated 

using global analysis, fitting the data to a simple 1:1 model. 
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2.4.8 Serum stability 

Each peptide (1 mM final concentration) was incubated in a mixture of 25% human serum 

(Sigma-Aldrich, Male type AB cat# H4522) in PBS (Phosphate buffer saline, pH 7.4, 450 µL 

final volume, DMSO final concentration 0.5%) at 37°C. At various time intervals, aliquots of 

peptide solution were removed and mixed with either acidic solutions (4% phosphoric acid, 

pH 1-2) or basic (4% ammonium hydroxide, pH 11-13) to dissociate peptide interactions 

with components of human serum. Peptide was isolated from human serum by column 

separation on Oasis® sorbent 96-well µElution plates (HLB- amphiphilic resin and MCX-

cation exchange resin) and manifold. The extracted peptide was quantified on an Acquity 

UHPLC-MS system, by measuring the peak area of a peptide specific M+n ion peak (average 

of 3 replicates). Percent abundance of peptide peak area relative to peptide peak abundance at 

T0 was plotted as a function of time. Peptide half-life was calculated by optimized curve 

fitting (linear, 2-parameter or 3-parameter exponential decay curve) on SigmaPlot™ and 

solving for time at 50% peptide peak abundance. 

2.4.9 Trypsin assay 

Human trypsin was purchased from Sigma-Aldrich (EC# 3.4.21.4). Lyophilized trypsin was 

reconstituted in a solution of 1 mM HCl, 10% glycerol, 1 mM 2-mercaptoethanol, aliquoted 

and frozen until future use. Assays were carried out with 25 nM trypsin, 250 µM peptide in 

67 mM Sodium Phosphate Buffer, pH 7.6 at 37°C. Periodically, aliquots were taken and 

trypsin activity quenched with equal volume 50:50 methanol:water, 1 M HCl. Peptide was 

quantified on an Acquity UHPLC, combined with a Xevo QTof mass spectrometer (Waters, 

Milford, MA.) The UPLC system was equipped with a Waters Acquity UHPLC BEH C18 

2.1 x 50 mm, 1.7 µm column; samples were run with a gradient of 5 to 40% water + 0.1% 

formic acid : acetonitrile + 0.1% formic acid for four minutes. Mass analysis was carried out 

in electro-spray ionization positive (ESI+) mode. Peptide and trypsin digest products were 

quantified by M/Z peak area analysis. Data was normalized to peptide abundance at T0, and 

half-life was measured by curve-fitting and solving for 50% abundance. Trypsin assays were 

carried out in triplicate. Trypsin activity towards a control substrate, 250 µM Nα-benzoyl-L-

Arginine Ethyl Ester (BAEE), was run before each test to confirm enzyme activity. 
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2.4.10 Cell migration assay 

Cell migration assay was performed using Chemicon Assay Kits (ECM510, ECM555; 

Billerica, MA, USA) according to manufacturer’s protocol. Briefly, sub-confluent cultures of 

RHAMM-overexpressing (LR21) cells were serum-starved overnight before plating 7.5x104 

cells in the upper chamber of the Boyden chamber either in the presence or absence of 10 

ng/mL of peptide. 30% fetal bovine serum in DMEM was used as the chemo-attractant in the 

lower chamber. The number of cells that had crossed the membrane after 20 hours was 

assessed using the CyQUANT® GR Dye and lysis buffer solution provided in the kit. 

Fluorescence was measured with a fluorescent plate reader using a 480/520 nm filter set. 

2.4.11 RAW-blue macrophage reporter assay 

To determine the effect of various peptides on inflammation, commercially available murine 

RAW 264.7 macrophages carrying a SEAP reporter that is inducible by NF-κB (RAW-Blue; 

InvivoGen, San Diego, CA, USA) were used. Cells were grown to 80% confluence in 

DMEM containing 4.5 g/L glucose, 10% heat-inactivated fetal bovine serum, 2 mM L-

glutamine, 50µg/mL penicillin/streptomycin, 100 µg/mL Normocin (InvivoGen) at 37°C in 

5% CO2. For peptide screening experiments, cells were scraped in growth medium, counted, 

and plated to flat-bottom 96-well plates at a density of 5x104 cells/well either in the presence 

or absence (control) of 200 ng/mL TLR1/TLR2 agonist PAM3CSK4 (InvivoGen). RHAMM 

peptides were added in 6 replicate wells at a dose of 10 ng/mL in the presence of 

PAM3CSK4. After 18 hours of stimulation, SEAP concentrations (indicating NF-κB activity) 

were measured in the supernatants collected from the RAW-Blue cells using QUANTI-Blue 

reagent (InvivoGen). After 20 minutes of incubation at 37°C, SEAP levels were determined 

using spectrophotometry at a wavelength of 630 nm. 

2.4.12 TGF-β-induced fibrosis assay 

IMR90 human fetal lung fibroblasts were obtained from ATCC and maintained in DMEM 

supplemented with 10% fetal bovine serum. In order to examine the effect of RHAMM 

peptides on myofibroblast differentiation, 80% confluent cultures were serum starved 

overnight prior to addition of TGF-β (2 ng/mL, R&D Systems). Cells were treated with TGF-

β for 24 hours prior to addition of RHAMM peptides (10ng/mL). 48 hours after addition of 
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peptides, culture supernatants were collected and levels of active TGF-β measured using 

commercially available TGF-β ELISA (Quantikine, R&D Systems). 
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Chapter 3 

3 Structure activity relationship studies of cyclic peptides 
comprised of the second hyaluronan binding domain of 
RHAMM 

3.1 Introduction 

3.1.1 Difference between Mus musculus and Homo sapiens 

sequences 

The use of Mus musculus in research is a practice that dates back to 19101. This is 

because M. musculus and Homo sapiens share a common ancestor, allowing for a high 

degree of homology between the genomes2. Approximately 80% of genes within the M. 

musculus sequence have a single homologue in the H. sapiens genome, with both genomes 

encoding for approximately 30,000 proteins2. This homology allows for the translation of 

results from mouse models to humans. In the previously described work, in which the 

secondary structure of the hyaluronan binding domains (HABDs) of the receptor for 

hyaluronan mediated motility (RHAMM) were stabilized by cyclization, the RHAMM 

sequences that were used were drawn from the genome of M. musculus. The M. musculus 

and H. sapiens sequences of full length RHAMM have 85 percent homology, with HABD1 

having 100 percent homology and HABD2 having 71 percent homology with two 

conservative changes3 (Figure 3.1).  

 

Figure 3.1 - Sequences of RHAMM from Homo sapiens (top) and Mus musculus 

(bottom). HABD1 is highlighted in red and HABD2 is highlighted in green. The 

homologous sequences are seen (middle) with non-conserved changes seen as a blank 

and a conserved change as a +.3 

  

633 NLKQKIKHVVKLKDENSQLKSEVSKLRCQLAKKKQS
NLKQKIKHVVKLKDENSQLKSEVSKLRCQLAK+ KQ+
NLKQKIKHVVKLKDENSQLKSEVSKLR SQLVKRKQN716

669

752
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The H. sapiens sequence was not originally used for the HABD modifications, as the 

second hyaluronan binding domain (HABD2) sequence contains a cysteine residue (position 

744). Cysteine can cause issues during solid-phase peptide synthesis due to racemization 

during coupling steps or formation of intermolecular disulfide bonds via oxidation4. These 

problems can be avoided by using alternative coupling reagents or by removing the cysteine 

residue from the sequence. Therapeutics containing free thiols can result in oxidation before 

or after administration of the drug, therefore changing its composition and potential effects5. 

Changing the cysteine to another amino acid (such as serine in the M. musculus sequence) 

would eliminate this problem and would provide a more stable drug for in vivo use. In order 

to identify the impact that this sequence change to H. sapiens would have on binding to 

hyaluronan (HA), its effect on helicity and binding was investigated.   

3.1.2 Identifying essential residues for binding 

The hyaladherin group of proteins, which all bind HA, have a conserved binding 

region that can provide insight on how these proteins interact with this polysaccride6. The 

binding regions of the hyaladherins include the previously mentioned BX7B binding motif, 

where seven non-acidic residues separate two basic residues in order to provide adequate 

spacing6. There are four basic residues within HABD2; if helicity can be introduced in this 

sequence via cyclization of two amino acid side chains, the basic residues are likely to be 

positioned more optimally, facilitating interaction with HA. However, if only two basic 

residues are needed to provide the proper BX7B motif remains, it would allow for further 

peptide modifications and ultimately an improved sequence with increased affinity to HA. 

Reducing the number of positively charged residues may also be beneficial for future 

development of this cyclic peptide as a therapeutic. 

Alanine scans are a method used to identify the necessary residues for functional 

activity of a peptide, such as target binding or bioactivity. An alanine scan involves creating 

a series of peptides in which one amino acid in the sequence is replaced with alanine, and 

comparing the activity of the alanine-containing sequences to the parent sequence. This has 

been used to yield important functional information and can provide insight into how the 

parent sequence can be further modified to increase activity7–9. Alanine is utilized because its 

side chain does not continue past the β-carbon, and therefore determines whether the side 
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chain of the replaced amino acid is important for bioactivity7. Alanine is a helix-stabilizing 

residue; however, the loss of the side chain functionality may disrupt the secondary 

structure10. An alanine scan was completed on the lead helical lactam-bridged peptide (15) to 

identify which basic residues were essential for binding to HA, as well as to determine how 

the positioning of those positive charges in the sequence affects binding to HA. 

3.2 Results and Discussion 

3.2.1 H. sapiens sequence 

The linear and the cyclized version of the H. sapiens RHAMM sequence were 

synthesized to compare them to the M. musculus sequence reported in Chapter 2 (Table 3.1). 

These peptides were synthesized as previously mentioned through solid phase peptide 

synthesis. However, when cleaving the linear peptide from the resin, dithiothritol (DTT) was 

employed due to the presence of cysteine. DDT is a redox reagent that will help reduce the 

chance of the oxidation of the thiol or the formation of intermolecular bonds during the 

reaction.  

Table 3.1 - H. sapiens linear and cyclized (i, i+4) sequences of HABD2. Both sequences 

were amidated on the C-terminus and acetylated on the N-terminus. Mean residue 

ellipticity values at 222 nm, ratios of mean residue ellipticities at 222/208 nm and 

percentage helicity at 25°C are reported. 

Cmpd Sequence Species 

Water Water/40% TFE 

θ222/θ208 
% 

Helicity 
θ222/θ208 

% 

Helicity 

12 Ac-VSKLRSQLVKRKQN-NH
2
 

M. 

musculus 

0.23 14.8 0.72 40.9 

15 
cyclo-6,10(Ac-

VSKLR[EQLVK]RKQN-NH
2
) 

0.61 28.0 0.79 44.8 

19 Ac-VSKLRCQLLAKKKQS-NH
2
 

H. 

sapiens 

0.22 22.9 0.75 79.6 

20 
cyclo-6,10(Ac-

VSKLR[EQLAK]KKQS-NH
2
) 

0.79 82.5 0.86 91.6 
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The helicity of the H. sapiens sequences (19 and 20) was evaluated and compared 

with their M. musculus equivalents (12 and 15). The H. sapiens linear sequence (19) has 

comparable percent helicity to the linear sequence of M. musculus (12). However, the 

cyclized version of H. sapiens (20) has an increase in helicity over the M. musculus (15), 

which might be due to the non-conserved amino acids aiding in helical formation. When 

examining the CD spectra of the compounds, the H. sapiens sequence (20) has greater 

minima at 222 nm and 208 nm than compound 15 (the M. musculus sequence), which is 

indicative of greater α-helical character (Figure 3.2). 

 

Figure 3.2 - CD spectra of the linear and cyclized sequences from M. musculus (12 and 

15) compared with the linear and cyclized sequences from H. sapiens (19 and 20). 

 

The peptides were evaluated for their ability to bind HA, as it was hypothesized that 

an increase in helicity would correlate to an increase in binding affinity. Both linear 

sequences (12 and 19) showed comparable binding to HA, while the cyclized peptide from 

M. musculus (15) still exhibited the strongest binding interaction (Figure 3.3). 
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Figure 3.3 - SPR binding curves for both M. musculus sequences (12 and 15) and H. 

sapiens sequences (19 and 20) that was passed over HA-coated gold chip at a 

concentration of 25 µM. 

 

The binding affinities were determined from the SPR data, and it can be observed that 

cyclizing the H. sapiens sequence (20) did improve the binding when compared to the linear 

counterpart (19), but affinity was not as the cyclized peptide derived from M. musculus (15)  

(Table 3.2).  

Table 3.2 - The calculated KD values determined by SPR for the M. musculus and H. 

sapiens sequences from HABD2. 
Cmpd Species KD (µM) 

12 
M. musculus 

1076 

15 1.0 

19 
H. sapiens 

1660 

20 16.2 

  

The HABD2 sequences of H. sapiens and M. musculus are 71 percent homologous, 

but the differences have an effect upon binding to HA. Despite there being an increase in 
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orientation of the binding residues; for instance, these residues might not be solvent exposed, 

causing a decrease in binding.  

3.2.2 Alanine scan to identify essential binding residues 

An alanine scan was completed in order to identify the essential binding residues 

within compound 15. This involved the replacement of two of the four basic residues in the 

sequence with alanine residues, resulting in only one basic residue on either side of the staple 

(Table 3.3). If only one basic residue at a time was replaced with alanine, then there is the 

potential for the remaining basic residues to mask the contribution of the lost residue.  

Table 3.3 - Comparison of the helicity of compound 15 and the resulting sequences 

resulting from the alanine scan of its basic residues (21-24). All sequences were 

amidated on the C-terminus and acetylated on the N-terminus. Mean residue ellipticity 

values at 222 nm, ratios of mean residue ellipticities at 222/208 nm and percentage 

helicity that were determined at 20°C. 

Cmpd Sequence 

Water Water/40% TFE 

θ222/θ208 
% 

Helicity 
θ222/θ208 

% 

Helicity 

15 cyclo-6,10(Ac-VSKLR[EQLVK]RKQN-NH
2
) 0.61 55.9 0.79 75.7 

21 cyclo-6,10(Ac-VSKLA[EQLVK]RAQN-NH
2
) 0.84 88.0 0.84 87.9 

22 cyclo-6,10(Ac-VSKLA[EQLVK]AKQN-NH
2
) 0.82 80.9 0.84 86.5 

23 cyclo-6,10(Ac-VSALR[EQLVK]RAQN-NH
2
) 0.60 58.1 0.82 81.0 

24 cyclo-6,10(Ac-VSALR[EQLVK]AKQN-NH
2
) 0.72 69.8 0.83 84.3 

 

The CD spectra and resulting percentage helicity of the alanine scan peptides showed 

that three of the four peptides had increased α-helical character (21, 22, and 24) (Figure 3.4). 

It was hypothesized that the same degree of helicity would be introduced in each sequence, 

as the same two helix-stabilizing residues were introduced in all cases. However, when a 

basic residue immediately preceding or following the staple is replaced with an alanine there 
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is an increase in helicity, suggesting that the charged side chain of these basic residues may 

have had a negative impact on the helicity of the sequences. This indicates that the placement 

of basic residues is important in determining the optimal helicity, as compound 23 has the 

basic residues surrounding the staple within the sequence and it contains the least amount of 

helicity. 

 

Figure 3.4 - CD spectra from the lead cyclic peptide from HABD2 (15) compared with 

the alanine scan sequences (21-24). 

 

Of the alanine scan compounds, compound 21 has the greatest increase in helicity 

compared to compound 15, and has a 4-fold increase in helicity compared to the linear 

sequence of HABD2 (compound 12).  

The alanine scan peptides were next analyzed by SPR to identify the peptides’ 

binding to HA compared to the lead sequence (15). These peptides were passed over the 5-10 

kDa HA-coated chip at various concentrations as previously described in order to determine 

their binding kinetics; the absorbance readings of each peptide were also plotted together to 

compare their signals intensities at identical concentrations (Figure 3.5).  
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Figure 3.5 - SPR binding curves for the lead cyclic peptide from HABD2 (15) and the 

alanine scan sequences (21-24) that were passed over HA-coated gold chip at a 

concentration of 25 µM. 

 

Compound 15 still had the greatest signal intensity and the strongest binding affinity 

(1.01 µM) towards HA, but peptide 23 showed comparable binding to HA with a KD of 3.08 

µM. Compound 21, which had the greatest increase in helicity, actually had diminished 

binding, with a KD that was higher than the linear sequence (Table 3.4). The other sequences 

that had improved helicity (22 and 24), had worse binding compared to that of 15 and 23. 

Site-directed mutagenesis of the HABDs of RHAMM discovered that the removal of the 

basic residue at the beginning of HABD2 (K3 in the cyclic peptides mimicking HABD2) was 

critical for binding of the RHAMM protein to HA6. Compounds 23 and 24 have this K3 

residue replaced with an alanine, but have greater affinity to HA compared to 21 and 22 

(where K3 is present). This highlights one of the differences between the properties of these 

cyclic peptides mimicking RHAMM and the full-length protein. 
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Table 3.4 - The calculated KD values determined by SPR for the alanine scan sequences 
Cmpd KD (µM) 

21 4058 

22 11 

23 3.0 

24 8.5 

 

Compound 21 has the proper BX7B binding motif that was previously hypothesized 

to be essential for binding to HA. However, these results show compound 21 has worse 

binding to HA when compared to the other alanine sequences (22-24), and yet these 

sequences do not have the exact BX7B motif. The diminished binding of compound 21 

despite the large increase in helicity may be due to the positioning of the remaining basic 

residues in the sequence when folded. This can be determined using a helical-wheel 

projection, which shows the position of the amino acids in a sequence assuming that this 

sequence allows for the formation of a perfect helix11. Helical wheel projections can be used 

to gain an approximate understanding of where these basic residues fall in relation to the 

staple; as these sequences do not form a perfect α-helix, the reported positions are 

understood not to be the exact locations of the residues (Figure 3.6). 
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Figure 3.6 - Helical wheel projection of the best cyclized sequence of HABD2 (15) and 

the sequences resulting from the alanine scan of the basic residues (21-24). The basic 

residues are highlighted in green and the alanine residues are in red. 

 

When the Lys-12 and Arg-5 are both replaced by an alanine residue (as in compound 

21), only Arg-11 and Lys-3 remain available for binding. These two residues are close to the 

lactam bridge and are separated by Asn-14 and Gln-7. Asn and Gln both have long side 

chains that could interfere with the binding of Lys/Arg to HA. All other sequences have 

improved binding to HA when compared to 21, and this might be due to the presence of a 

basic residue on the opposite face of the helix to the staple. The placement of residues away 

from the staple appears to be imperative for binding, as compound 21 shows that a lack of 

residues placed opposite to the staple results in a loss of binding. Compound 23 is seen to 

have comparable binding to that of the best cyclic sequence (15), and this might be because 

of an optimal spacing in the helical wheel of the basic residues. In addition, the amino acids 

separating the basic residues in 23 (Leu and Val) have short, nonpolar side chains, which are 

less likely to interact with HA than amino acids that have longer, polar side chains.  
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3.3 Conclusions 

As the cyclized peptide with the best binding to HA, compound 15 remains the lead 

sequence across both HABD1 and HABD2 of RHAMM. The cyclic peptide derived from the 

H. sapiens RHAMM sequence had improved helicity over the original M. musculus sequence 

but did not bind HA as strongly. The replacement of two basic residues with alanine residues 

also did not result in the positive correlation between helicity and binding to HA that was 

previously seen in the HABD2 staple scan. In these instances, the specific residue replaced 

by alanine appeared to be of importance: the placement of the positive residues on the 

opposite face of the helix than to staple was required in order to bind HA. This was modeled 

by the helical-wheel projection, which demonstrated that the placement of the staple close to 

the two remaining basic residues within the sequence resulted in loss of binding.  

It can also be seen that the there is not a need for the specific BX7B binding motif for 

cyclic peptides that mimic HABD2. Compound 21, the only alanine scan sequence that has 

the BX7B motif, was not able to bind to HA (KD = 4058 µM), while compound 23, that has a 

BX5B motif, had comparable binding to HA as the lead cyclic peptide (15) (KD = 3.0 µM for 

23; KD = 1.0 µM for 15). It can be concluded that the positioning of the positive residues in 

three-dimensional space within these cyclic peptide sequences is the most important 

determinant for binding. This allows for a better understanding of how these cyclic peptides 

differ from that of the full protein sequence of RHAMM. This information on interactions 

between ligands and cyclic peptide mimics can assist in the design of more peptide 

therapeutics that inhibits protein-carbohydrate interactions.  

3.4 Experimental 

3.4.1 General information 

All Fmoc-protected amino acids were obtained from ChemImpex. HCTU, HATU, and Rink 

Amide MBHA Resin (4-(2’,4’-dimethoxyphenyl-(9-fluorenylmethoxycarbonyl)-

aminomethyl)-phenoxy-acetamidonorleucyl-4-methyl benzhydrylamine resin) were obtained 

from ChemImpex. Tetrakis(triphenylphosphine)palladium(0), phenylsilane, Fmoc-AEEA 

spacer, and NHS-Biotin were obtained from Sigma-Aldrich. All solvents were obtained from 
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Fischer Thermo-Scientific. 

3.4.2 Solid-phase peptide synthesis 

Fmoc-based solid-phase synthesis was carried out by either manual synthesis using a fritted 

glass peptide vessel or by automated synthesis using a Biotage® Syro Wave™ automated 

peptide synthesizer. Synthesis was performed on a 0.1 mmol scale with 0.52 mmol/g Fmoc-

Rink amide MBHA resin and a 3-fold excess of the protected amino acids. The resin was 

swelled in CH2Cl2 (2.0 mL, 15 minutes) then rinsed with DMF (1.0 mL, 1 min). Fmoc 

deprotection was performed with a solution of 20% piperidine/DMF (1.5 mL) 5 minutes, 

then washed with three times with DMF (2.0 mL, vortex 30 seconds) and then again for 

15min with 20% piperidine/DMF (1.5 mL). The resin was further washed with DMF six 

times (2.0 mL, vortex 30 seconds). A Kaiser test was performed after the Fmoc removal to 

verify the presence of a free primary amino group. Fmoc-protected amino acid (0.3 mmol) 

and HCTU (0.3 mmol) was dissolved in DMF (1.5 mL) and added to the resin. The mixture 

was vortexed for 30 seconds and then DIPEA (0.6 mmol) was added to the mixture and 

vortexed for 1 hour. The deprotection/amino acid coupling cycle was repeated until the 

desired amino acid sequence was obtained. After the final amino acid was coupled, the resin 

was washed with DMF (3x) and CH2Cl2 (3x) and then dried under vacuum and stored in the 

freezer (-20 ᴼC). Removal of the N-terminal Fmoc protecting group was achieved using the 

previously described deprotection procedure. Cleavage of the peptide from the resin and side 

chain protecting groups was performed by adding a solution of 95% trifluoroacetic acid/2.5% 

triisopropylsilane/2.5% water (3 mL) to the resin and vortexing for 4-5 hours. After filtration, 

the peptide was precipitated with cold tert-butyl methyl ether (TBME) (20 mL) and collected 

by centrifugation. The mother liquor was decanted, the pellet dissolved in water (20mL) and 

lyophilized to obtain the crude fully deprotected peptide. 

3.4.3 Deprotection of the allyloxycarbonyl (Alloc) and allylester (OAll) 

protecting groups 

Selective deprotection of the allyloxycarbonyl and the allylester protecting groups was 

accomplished by adding CH2Cl2 (4.5 mL) to the resin-bound peptide and shaking gently for 

10 minutes. After addition of phenylsilane (24 eq), the peptide vessel was flushed with 
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nitrogen for 5 minutes. Tetrakis(triphenylphosphine) palladium (0) (0.1 eq) was then added 

to the mixture and the peptide vessel was again flushed with nitrogen, and the reaction was 

allowed to proceed for 10 minutes. The peptide-resin was washed with CH2Cl2 (4 x 30 

seconds), followed by a series of washings with CH2Cl2, DMF, MeOH, DMF, and CH2Cl2 

(30 seconds each).  

3.4.4 Lactam bridge formation 

After selective deprotection of alloc and allyl ester groups, HATU (3 eq) was dissolved in 

DMF (1.5 mL), added to the resin and vortexed for 30 seconds. DIPEA (6 eq) was then 

added and the reaction was vortexed for 2 hours. The resin was rinsed with DMF and CH2Cl2 

(2.0 ml, 3 x 30 seconds each) to remove any residual reactants. 

3.4.5 Purification by RP-HPLC/ESI-MS 

Peptides were analyzed using a reverse-phase analytical HPLC column (Agilent Zorbax SB-

C18 column 4.6 x 150 mm, 3.5 µm). This system was equipped with a Waters 600E 

Multisolvent Delivery System, Waters 600 controller, Waters inline degasser, and Waters 

Masslynx software (version 4.1). Employed mobile phases were 0.1% TFA in Milli-Q water 

(eluent A) and 0.1% TFA in acetonitrile (eluent B). The flow rate was set at 1.5 mLmin-1 

with a gradient elution over a 12 minute gradient. The column eluent was monitored using a 

Waters 2998 Photodiode array detector. Peptides were purified using a reversed-phase 

preparative HPLC column (Agilent Zorbax SB-C18 column 21.2 x 150 mm, 5 µm) on the 

same system described above. The detection method and eluents were the same as the 

analytical system, with the flow rate was set at 20 mLmin-1. The collected fractions were then 

lyophilized to a solid and analyzed by ESI-MS. Purity of final products was determined by an 

Acquity UHPLC-MS (220 nm). 

3.4.6 Circular dichroism (CD) spectroscopy 

CD spectra were obtained on a Jasco J-810 spectropolarimeter and recorded in the range of 

180-260 nm. Peptide solutions were prepared with a 0.1 M phosphate buffer solution to a 

concentration of 0.5 mM. The measurements were performed in quartz cuvettes with a path 

length of 1 mm and a scanning speed of 10-50 nm/min. Five individual data points were 
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averaged by the instrument in order to obtain the reported CD spectrum. The measurements 

were carried out at 20 ᴼC. A blank solution of 0.1 M phosphate buffer solution was run 

before every measurement in order to baseline correct for any UV-interference observed 

from the buffer. Deconvolution of CD spectra were obtained using the CONTINLL program, 

which is part of the web-based program CdPro (http://lamar.colostate.edu/~sreeram/CDPro/). 

3.4.7 Surface plasmon resonance 

HA was modified using a literature procedure, with some modifications12. 5-10kDa HA (40 

mg) was dissolved in DMSO/H2O (7/3, v/v) with an excess amount of sodium 

cyanoborohydride added. This solution was allowed to stir for 12 hours at room temperature, 

10 eq of cystamine was added and the mixture was allowed to stir for a further 24 hours. The 

solution was then added to a dialysis membrane (MWCO 3.5-5 kDa) where the by-products 

were removed by dialysis for 3 days followed by lyophilization until a white powder was 

obtained. SPR experiments were performed with an openSPR (Nicoya Lifesciences, 

Waterloo, Canada) at 25°C with a 100 µL loading loop and a constant flow rate of 50 

µL/min. The cystamine-modified HA was added to a functionalized gold chip by dissolving 

HA-cystamine (1 mg/mL) in water and incubating for 24 hours at 4°C. Binding of the HABD 

mimics and the linear sequences were tested in a 10mM solution of phosphate buffered saline 

(137 mM NaCl, 2.7 mM KCl, 10mM Na2HPO4, 2 mM KH2PO4). The peptides were injected 

over the bound HA in concentrations from 1 µM to 1 mM for 2 min to allow association. 10 

mM PBS was passed over the sensor for 8 min to allow dissociation. After each peptide 

injection, 1 mM NaCl was injected to completely dissociate the complex and regenerate the 

HA surface. Data analysis was performed using Trace Drawer software (Ridgeview 

Instruments AB) as recommended by the manufacturer. Kinetic parameters were calculated 

using global analysis, fitting the data to a simple 1:1 model. 

3.5 References 

(1) Morse III, H. C. (2007) Building a better mouse: one hundred years of genetics and 

biology, in The Mouse in Biomedical Research (Fox, J. G., Davisson, M. T., Quimby, F. W., 

Barthold, S. W., Newcomer, C. E., and Smith, A. L., Eds.) 2nd ed., pp 1–11. Academic 

Press, Burlington, MA. 



www.manaraa.com

 58 

(2) Waterston, R. H. (2002) Initial sequencing and comparative analysis of the mouse 

genome. Nature 420, 520–562. 

(3) Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and 

Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database 

search programs. Nucleic Acids Res. 25, 3389–3402. 

(4) Kaiser, T., Nicholson, G. J., Kohlbau, H. J., and W., V. (1996) Racemization Studies of 

Fmoc-Cys(Trt)-OH during Stepwise Fmoc-Solid Phase Peptide Synthesis. Tetrahedron Lett. 

37, 1187–1190. 

(5) Craik, D. J., Fairlie, D. P., Liras, S., and Price, D. (2013) The Future of Peptide-based 

Drugs. Chem. Biol. Drug Des. 81, 136–147. 

(6) Yang, B., Yang, B. L., Savani, R. C., and Turley, E. A. (1994) Identification of a 

common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD4 and 

link protein. EMBO J. 1, 286–296. 

(7) Cunningham, B. C., and Wells, J. A. (1989) High-Resolution Epitope Mapping of hGH-

Receptor Interactions by Alanine-Scanning Mutagenesis. Science (80-. ). 244, 1081–1085. 

(8) Blaber, M., Baase, W. A., Gassner, N., and Matthews, B. W. (1995) Alanine scanning 

mutagenesis of the α-Helix 115-123 of phage T4 lysozyme: effects on structure , stability and 

the binding of solvent. J. Mol. Biol. 246, 317–330. 

(9) Ashkenazi, A., Prestat, L. G., Marsters, S. A., Camerato, T. R., Rosenthalf, K. A., 

Fendlyt, B. M., and Capon, D. J. (1990) Mapping the CD4 binding site for human 

immunodeficiency virus by alanine-scanning mutagenesis. Proc. Natl. Acad. Sci. USA 87, 

7150–7154. 

(10) Shepherd, N. E., Hoang, H. N., Abbenante, G., and Fairlie, D. P. (2005) Single Turn 

Peptide Alpha Helices with Exceptional Stability in Water. J. Am. Chem. Soc. 127, 2974–

2983. 

(11) Schiffer, M., and Edmundson, A. B. (1967) Use of helical wheels to represent the 

structures of proteins and to identify segments with helical potential. Biophys. J. 7, 121–135. 



www.manaraa.com

 59 

(12) Park, H., Lee, S. J., Oh, J., Lee, S., Jeong, Y., and Lee, H. C. (2015) Smart 

Nanoparticles Based on Hyaluronic Acid for Redox-Responsive and CD44 Receptor-

Mediated Targeting of Tumor. Nanoscale Res. Lett. 10, 1–10. 

 



www.manaraa.com

 60 

Chapter 4 

4 Conclusions 

4.1 Outlooks and Conclusions 

  An elevated level of the receptor for hyaluronan mediated motility (RHAMM) has 

been observed in malignant prostate cancer and is correlated with poor prognosis due to 

increased likelihood of metastases1. RHAMM can bind to hyaluronan (HA) to promote cell 

migration, inflammation, and fibrosis2. This interaction primarily occurs ionically between 

the basic residues present in the two hyaluronan binding domains (HABDs) of RHAMM and 

the carboxylic acids contained in HA3,4. The ability of the basic residues of RHAMM to bind 

to HA is facilitated by the highly α-helical secondary structure of the protein. To make a 

more drug-like molecule capable of interfering with RHAMM-HA interactions, truncating 

the RHAMM sequence to contain only one of the binding domains is more favorable. A 

truncated peptide would be a more drug-like molecule than the full-length protein, provided 

that it still maintained affinity for the polysaccharide HA. Also, there is an advantage for a 

shorter amino acid sequence than a large protein, due to ease of synthesis and lower 

production costs. However, when the sequence is truncated, the elimination of stabilizing 

residues causes loss of secondary structure; this would decrease interaction between the 

peptide and HA. To maintain the secondary structure of this shortened sequence, cyclization 

via stapling of two amino acid residues can be accomplished. This allows the peptide to 

overcome the high energetic barrier that is associated with α-helix formation5. In this thesis, 

both HABDs of the protein RHAMM were examined to determine whether a lactam bridge-

cyclized peptide could mimic the native interactions of RHAMM towards its endogenous 

ligand HA. 

 A staple scan of both HABDs was performed to identify the cyclized sequence that 

had the best induced helicity and binding to HA. When helicity was examined, the linear 

sequences of the HABDs were tested in both water and a 40% trifluoroethanol (TFE)/water 

solution. TFE can act to stabilize secondary structure; therefore the measured helicity of the 

linear sequence in this solution can be viewed as the theoretical maximum helicity of the 

sequence. Because these sequences are truncated and do not have the support of stabilizing 
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residues in the native sequence, it is unlikely they will possess the same degree of helicity as 

the full protein sequence.  

 When examining the helicity of the peptides containing HABD1, none of the staples 

that were introduced achieved the same degree of helicity as the linear sequence in the 40% 

TFE solution. However, when the staples were introduced to HABD2, there were two 

sequences that acquired comparable helicity to that of the theoretical maximum helicity. This 

difference in the effect that the staples had on HABD2 compared to HABD1 could be due to 

the increased amount of helix stabilizing residues present in the HABD2 sequence.  

 The ability of all peptides to bind HA was also examined. The linear sequence of 

HABD1 had greater binding to HA compared to the linear sequence of HABD2. This is 

opposite of that was seen with the helicity, as HABD1 had a lower helical content than that 

of HABD2. The introduction of staples to HABD1 increased HA binding in three out of the 

five sequences tested, while the introduction of staples to HABD2 increased binding for all 

four sequences tested. The lack of improved binding in two of the HABD1 sequences might 

be due to the replacement of amino acids essential for binding in order to create the lactam 

bridge; whereas in HABD2, no such residues were removed.  

 Through these staple scans, one lead peptide (15) produced a significant improvement 

in helicity and binding to HA. This compound was cyclized between the amino acid residues 

in position 6 and 10 of HABD2. This cyclized peptide was observed to inhibit migration of 

cancer cells as well as the release of markers for inflammation and fibrosis. Peptide 15 also 

had increased stability towards degradation via both trypsin and human serum. Modification 

of this sequence to mimic the H. sapiens sequence was not possible; while the humanized 

sequence increased helicity, it diminished binding to HA. Results of an alanine scan showed 

that at least one basic residue must be on the opposite face of the helix relative to the staple 

location (Figure 4.1). This may be due to the staple blocking the basic residues when on the 

same face of the helix.  
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Figure 4.1 - Helical wheel projection of lead cyclic peptide (15). At least one basic 

residue must be present on the face of the helix that is opposite to the staple for binding 

to HA. 

 

 To create a better drug candidate, this lead cyclized sequence can be further modified 

to increase helicity while hopefully also improving binding to HA. While there was a 

positive correlation between helicity and binding to HA present in the HABD2 staple scan, 

this is not always the case. To further modify this sequence, helix-stabilizing residues could 

be introduced between the stapling residues as a means of avoiding potential interference 

with these amino acid side chains with binding to HA. 

 It is important to further evaluate the structure of this lead cyclized peptide. The 

secondary structure could be more accurately resolved through the use of crystallography and 

2D NMR spectroscopy studies. This would clarify which segments of the sequence contain 
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an α-helical conformation, as the CD spectral data suggests a combination of secondary 

structural elements.  

 Compound 15 has therapeutic potential in the treatment of cancer, such as prostate or 

breast. Due to its ability to mimic RHAMM, compound 15 can bind to HA and block the 

native interaction between RHAMM and HA. This can decrease cell migration and the 

inflammation associated with cancer.  Preventing the spread of a primary tumor through 

decreased cell migration would help to decrease the formation of metastatic tumors, a major 

cause of complications in cancer treatment6. Due to this and many other problems associated 

with treating metastases, it would be beneficial to stop the parental tumor from spreading. If 

a RHAMM-overexpressing tumor could be detected and diagnosed at an early stage, then a 

peptide such as compound 15 could be added to a patient’s treatment regimen to prevent 

metastasis or to slow the tumor’s ability to metastasize. This would be a novel therapeutic 

route for cancer treatment. 
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5 Appendix  

5.1 Characterization of synthesized peptides 
Table 1 – Sequences of HABD1 where (i, i+4) staples were placed in cyclized versions. All 

sequences were amidated on the C-terminus and acetylated on the N-terminus. 

Cmpd Sequence 
ESI-MS 

Purity 
(%)* Expected Observed 

1 Ac-NLKQKIKHVVKLKDE-NH
2
 

[M+2H]2+ = 931.75 

[M+3H]3+ = 621.33 

[M+2H]2+= 931.60 

[M+3H]3+= 621.32 
>98 

2 
cyclo-4,8(Ac-
NLK[EKIKK]VVKLKDE-NH

2
) 

[M+2H]2+= 918.07 

[M+3H]3+= 612.38 

[M+2H]2+= 918.77 

[M+3H]3+= 612.81 
96.1 

3 
cyclo-5,9(Ac-
NLKQ[EIKHK]VKLKDE-NH

2
) 

[M+2H]2+= 937.04 

[M+3H]3+= 635.03 

[M+2H]2+= 937.79 

[M+3H]3+= 635.45 
>98 

4 
cyclo-6,10(Ac-
NLKQK[EKHVK]KLKDE-NH

2
) 

[M+2H]2+= 944.55 

[M+3H]3+= 630.03 

[M+2H]2+= 945.30 

[M+3H]3+= 630.50 
>98 

5 
cyclo-7,11(Ac-
NLKQKI[EHVVK]LKDE-NH

2
) 

[M+2H]2+= 922.53 

[M+3H]3+= 615.35 

[M+2H]2+= 923.36 

[M+3H]3+= 615.74 
>98 

6 
cyclo-8,12(Ac-
NLKQKIK[EVVKK]KDE-NH

2
) 

[M+2H]2+= 925.56 

[M+3H]3+= 617.37 

[M+2H]2+= 926.15 

[M+3H]3+= 617.73 
97.2 

*Purity is determined by integrating the area under the LC curve	
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Table 2 – Sequences of HABD2 where (i, i+4) staples were placed in cyclized versions. All 

sequences were amidated on the C-terminus and either non-acetylated or acetylated the N-

terminus. 

Cmpd Sequence 
ESI-MS 

Purity 
(%) Expected Observed 

7 H-VSKLRSQLVKRKQN-NH
2
 

[M+2H]2+ = 842.51 

[M+3H]3+ = 562.01 

[M+2H]2+= 842.85 

[M+3H]3+= 562.31 
>98 

8 
cyclo-4,8(H-VSK[ERSQK]VKRKQN-
NH

2
) 

[M+2H]2+= 848.99 

[M+3H]3+= 566.33 

[M+2H]2+= 848.80 

[M+3H]3+= 566.13 
>98 

9 cyclo-5,9(H-VSKL[ESQLK]KRKQN-NH
2
) 

[M+3H]3+= 556.33 

[M+4H]4+= 417.49 

[M+3H]3+= 556.36 

[M+4H]4+= 417.52 
97.5 

10 
cyclo-6,10(H-VSKLR[EQLVK]RKQN-
NH

2
) 

[M+2H]2+= 854.02 

[M+3H]3+= 569.68 

[M+2H]2+= 854.45 

[M+3H]3+= 569.85 
>98 

11 
cyclo-7,11(H-VSKLRS[ELVKK]KQN-
NH

2
) 

[M+2H]2+= 819.50 

[M+3H]3+= 546.67 

[M+2H]2+= 819.93 

[M+3H]3+= 546.63 
>98 

12 Ac-VSKLRSQLVKRKQN-NH
2
 

[M+2H]2+ =863.75 

[M+3H]3+ = 575.92 

[M+2H]2+ = 863.50 

[M+3H]3+ = 575.92 
>98 

13 
cyclo-4,8(Ac-VSK[ERSQK]VKRKQN-
NH

2
) 

[M+2H]2+ =869.89 

[M+3H]3+ = 580.33 

[M+2H]2+ = 870.28 

[M+3H]3+ = 580.25 
>98 

14 
cyclo-5,9(Ac-VSKL[ESQLK]KRKQN-
NH

2
) 

[M+2H]2+ =855.43 

[M+3H]3+ = 570.62 

[M+2H]2+ = 855.45 

[M+3H]3+ = 570.59 
>98 

15 
cyclo-6,10(Ac-VSKLR[EQLVK]RKQN-
NH

2
) 

[M+2H]2+ =876.10 

[M+3H]3+ = 583.91 

[M+2H]2+ = 876.24 

[M+3H]3+ = 583.56 
96.3 

16 
cyclo-7,11(Ac-VSKLRS[ELVKK]KQN-
NH

2
) 

[M+2H]2+ = 840.51 

[M+3H]3+ = 560.67 

[M+2H]2+ = 840.88 

[M+3H]3+ = 560.81 
>98 

17 
cyclo-5,9(Ac-VSKL[KSQLE]KRKQN-
NH

2
) 

[M+2H]2+ =855.43 

[M+3H]3+ = 570.62 

[M+2H]2+ = 855.51 

[M+3H]3+ = 570.72 
>98 

18 
cyclo-6,10(Ac-VSKLR[KQLVE]RKQN-
NH

2
) 

[M+2H]2+ =876.10 

[M+3H]3+ = 583.91 

[M+2H]2+ = 876.11 

[M+3H]3+ = 584.49 
>98 
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Table 3 – Sequences of HABD2 derived from Homo sapiens where (i, i+4) staples were 

placed in cyclized versions. All sequences were amidated on the C-terminus and acetylated 

on the N-terminus. 

Cmpd Sequence 
ESI-MS 

Purity 
(%) Expected Observed 

19 Ac-VSKLRCQLLAKKKQS-NH
2
 

[M+2H]2+ = 822.03 

[M+3H]3+ = 548.02 

[M+2H]2+= 822.33 

[M+3H]3+= 548.67 
>98 

20 
cyclo-6,10(Ac-
VSKLR[EQLAK]KKQS-NH

2
) 

[M+2H]2+ = 833.5 

[M+3H]3+ = 556.00 

[M+2H]2+= 834.35 

[M+3H]3+= 556.64 
>98 

 

Table 4 – Sequences of the alanine scan of HABD2 where (i, i+4) staples were placed in 

cyclized versions. All sequences were amidated on the C-terminus and acetylated on the N-

terminus. 

Cmpd Sequence 
ESI-MS 

Purity 
(%) Expected Observed 

21 cyclo-6,10(Ac-VSKLA[EQLVK]RAQN-NH
2
) 

[M+2H]2+ = 812.97 

[M+3H]3+ = 542.31 

[M+2H]2+= 812.86 

[M+3H]3+= 542.78 
>98 

22 cyclo-6,10(Ac-VSKLA[EQLVK]AKQN-NH
2
) 

[M+2H]2+ = 803.96 

[M+3H]3+ = 536.31 

[M+2H]2+= 804.96 

[M+3H]3+= 537.01 
>98 

23 cyclo-6,10(Ac-VSALR[EQLVK]RAQN-NH
2
) [M+2H]2+ = 817.97 

[M+3H]3+ = 545.64 

[M+2H]2+= 818.62 

[M+3H]3+= 546.31 
>98 

24 cyclo-6,10(Ac-VSALR[EQLVK]AKQN-NH
2
) [M+2H]2+ = 803.96 

[M+3H]3+ = 536.31 

[M+2H]2+= 804.85 

[M+3H]3+= 536.99 
>98 

 

5.2  
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5.2 Trypsin degradation products 

5.2.1 Trypsin Degradation Products of Compound 12  
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5.2.2 Trypsin Degradation Products of Compound 15 
	

5.3  
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5.3 HPLC Traces   
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